Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1372809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606072

RESUMO

Sugar is a primary determinant of citrus fruit flavour, but undergoes varied accumulation processes across different citrus varieties owing to high genetic variability. Sucrose phosphate synthase (SPS), a key enzyme in glucose metabolism, plays a crucial role in this context. Despite its significance, there is limited research on sugar component quality and the expression and regulatory prediction of SPS genes during citrus fruit development. Therefore, we analysed the sugar quality formation process in 'Kiyomi' and 'Succosa', two citrus varieties, and performed a comprehensive genome-wide analysis of citrus CsSPSs. We observed that the accumulation of sugar components significantly differs between the two varieties, with the identification of four CsSPSs in citrus. CsSPS sequences were highly conserved, featuring typical SPS protein domains. Expression analysis revealed a positive correlation between CsSPS expression and sugar accumulation in citrus fruits. However, CsSPS expression displays specificity to different citrus tissues and varieties. Transcriptome co-expression network analysis suggests the involvement of multiple transcription factors in shaping citrus fruit sugar quality through the regulation of CsSPSs. Notably, the expression levels of four CsWRKYs (CsWRKY2, CsWRKY20, CsWRKY28, CsWRKY32), were significantly positively correlated with CsSPSs and CsWRKY20 might can activate sugar accumulation in citrus fruit through CsSPS2. Collectively, we further emphasize the potential importance of CsWRKYs in citrus sugar metabolism, our findings serve as a reference for understanding sugar component formation and predicting CsSPS expression and regulation during citrus fruit development.

2.
Front Plant Sci ; 15: 1348744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510435

RESUMO

'Fengtang' plums soften quickly and lose flavor after harvest. This study comprehensively evaluated the effect of exogenous melatonin on the fruit quality of 'Fengtang' plums. According to our findings, exogenous melatonin prevented plum fruit from losing water, delayed the decline in firmness, and preserved a high TSS/TA level. Additionally, exogenous melatonin also enhanced the activity of antioxidant enzymes and increased the non-enzymatic antioxidants, thereby further increasing the antioxidant capacity of plum fruit. Notably, exogenous melatonin delayed the degradation of covalent soluble pectin (CSP), cellulose, and hemicellulose, as well as the rise in water-soluble pectin (WSP) concentration and the activity of cell wall degrading enzymes. Further investigation using atomic force microscopy (AFM) revealed that the chain-like structure of ionic-soluble pectin (ISP) and the self-assembly network structures of CSP were depolymerized, and melatonin treatment retarded the depolymerization of pectin structures. Our results showed that exogenous melatonin preserved the postharvest quality of plum fruits by controlling fruit softness and antioxidant capacity during storage.

3.
Plant Cell Physiol ; 65(1): 68-78, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37814936

RESUMO

Reprograming of chromatin structures and changes in gene expression are critical for plant male gamete development, and epigenetic marks play an important role in these processes. Histone variant H3.3 is abundant in euchromatin and is largely associated with transcriptional activation. The precise function of H3.3 in gamete development remains unclear in plants. Here, we report that H3.3 is abundantly expressed in Arabidopsis anthers and its knockout mutant h3.3-1 is sterile due to male sterility. Transcriptome analysis of young inflorescence has identified 2348 genes downregulated in h3.3-1 mutant, among which 1087 target genes are directly bound by H3.3, especially at their 3' ends. As a group, this set of H3.3 targets is enriched in the reproduction-associated processes including male gamete generation, pollen sperm cell differentiation and pollen tube growth. The function of H3.3 in male gamete development is dependent on the Anti-Silencing Factor 1A/1B (ASF1A/1B)-Histone regulator A (HIRA)-mediated pathway. Our results suggest that ASF1A/1B-HIRA-mediated H3.3 deposition at its direct targets for transcription activation forms the regulatory networks responsible for male gamete development.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sementes/metabolismo , Fertilidade , Células Germinativas/metabolismo , Cromatina/metabolismo
4.
Front Plant Sci ; 14: 1264283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780491

RESUMO

Sugars and organic acids are the main factors determining the flavor of citrus fruit. The WRKY transcription factor family plays a vital role in plant growth and development. However, there are still few studies about the regulation of citrus WRKY transcription factors (CsWRKYs) on sugars and organic acids in citrus fruit. In this work, a genome-wide analysis of CsWRKYs was carried out in the citrus genome, and a total of 81 CsWRKYs were identified, which contained conserved WRKY motifs. Cis-regulatory element analysis revealed that most of the CsWRKY promoters contained several kinds of hormone-responsive and abiotic-responsive cis-elements. Furthermore, gene expression analysis and fruit quality determination showed that multiple CsWRKYs were closely linked to fruit sugars and organic acids with the development of citrus fruit. Notably, transcriptome co-expression network analysis further indicated that three CsWRKYs, namely, CsWRKY3, CsWRKY47, and CsWRKY46, co-expressed with multiple genes involved in various pathways, such as Pyruvate metabolism and Citrate cycle. These CsWRKYs may participate in the metabolism of fruit sugars and organic acids by regulating carbohydrate metabolism genes in citrus fruit. These findings provide comprehensive knowledge of the CsWRKY family on the regulation of fruit quality.

5.
Plant Cell ; 35(9): 3345-3362, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335899

RESUMO

Plants cope with various recurring stress conditions that often induce DNA damage, ultimately affecting plant genome integrity, growth, and productivity. The CROWDED NUCLEI (CRWN) family comprises lamin-like proteins with multiple functions, such as regulating gene expression, genome organization, and DNA damage repair in Arabidopsis (Arabidopsis thaliana). However, the mechanisms and consequences of CRWNs in DNA damage repair are largely unknown. Here, we reveal that CRWNs maintain genome stability by forming repairing nuclear bodies at DNA double-strand breaks. We demonstrate that CRWN1 and CRWN2 physically associate with the DNA damage repair proteins RAD51D and SUPPRESSOR OF NPR1-1 Inducible 1 (SNI1) and act in the same genetic pathway to mediate this process. Moreover, CRWN1 and CRWN2 partially localize at γ-H2AX foci upon DNA damage. Notably, CRWN1 and CRWN2 undergo liquid-liquid phase separation to form highly dynamic droplet-like structures with RAD51D and SNI1 to promote the DNA damage response (DDR). Collectively, our data shed light on the function of plant lamin-like proteins in the DDR and maintenance of genome stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Laminas/metabolismo , Proteínas Nucleares/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Instabilidade Genômica , Proteínas Repressoras/metabolismo
6.
J Exp Bot ; 74(14): 4158-4168, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37022978

RESUMO

Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stress, the plant hormone abscisic acid (ABA) activates stress responses and restricts plant growth. However, the epigenetic regulation of ABA signaling and crosstalk between ABA and auxin are not well known. Here, we report that the histone variant H2A.Z-knockdown mutant in Arabidopsis Col-0, h2a.z-kd, has altered ABA signaling and stress responses. RNA-sequencing data showed that a majority of stress-related genes are activated in h2a.z-kd. In addition, we found that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), and that this is involved in ABA-repression of SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing the ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Epigênese Genética , RNA/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Nat Commun ; 14(1): 1209, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869051

RESUMO

Histone H2A monoubiquitination (H2Aub1) functions as a conserved posttranslational modification in eukaryotes to maintain gene expression and guarantee cellular identity. Arabidopsis H2Aub1 is catalyzed by the core components AtRING1s and AtBMI1s of polycomb repressive complex 1 (PRC1). Because PRC1 components lack known DNA binding domains, it is unclear how H2Aub1 is established at specific genomic locations. Here, we show that the Arabidopsis cohesin subunits AtSYN4 and AtSCC3 interact with each other, and AtSCC3 binds to AtBMI1s. H2Aub1 levels are reduced in atsyn4 mutant or AtSCC3 artificial microRNA knockdown plants. ChIP-seq assays indicate that most binding events of AtSYN4 and AtSCC3 are associated with H2Aub1 along the genome where transcription is activated independently of H3K27me3. Finally, we show that AtSYN4 binds directly to the G-box motif and directs H2Aub1 to these sites. Our study thus reveals a mechanism for cohesin-mediated recruitment of AtBMI1s to specific genomic loci to mediate H2Aub1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Histonas , Complexo Repressor Polycomb 1 , Processamento de Proteína Pós-Traducional , Ubiquitinação
8.
New Phytol ; 236(5): 1721-1733, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36017638

RESUMO

Auxin is a critical phytohormone that is involved in the regulation of most plant growth and developmental responses. In particular, epigenetic mechanisms, like histone modifications and DNA methylation, were reported to affect auxin biosynthesis and transport. However, the involvement of other epigenetic factors, such as histone variant H2A.Z, in the auxin-related developmental regulation remains unclear. We report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has more lateral roots and weak gravitational responses related to auxin-regulated growth performances. Further study revealed that auxin promotes the eviction of H2A.Z from the auxin-responsive genes SMALL AUXIN-UP RNAs (SAURs) to activate their transcriptions. We found that IAA promotes the transcription of H2A.Z genes through HOMEOBOX PROTEIN 22/25 (AtHB22/25) transcription factors which work as downstream targets of ARF7/19 in auxin signaling. Double mutant of hb22 hb25 showed similar lateral root and gravitropism phenotypes to h2a.z-kd. Our results shed light on a reciprocal regulation hub through INOSITOL AUXOTROPHY 80-mediated H2A.Z eviction and ARF7/19-HB22/25-mediated H2A.Z transcription to modulate the activation of SAURs and plant growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Retroalimentação , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Mutação/genética
9.
Mol Plant Pathol ; 23(8): 1122-1140, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35363930

RESUMO

The arms race between fungal pathogens and plant hosts involves recognition of fungal effectors to induce host immunity. Although various fungal effectors have been identified, the effector functions of ribonucleases are largely unknown. Herein, we identified a ribonuclease secreted by Verticillium dahliae (VdRTX1) that translocates into the plant nucleus to modulate immunity. The activity of VdRTX1 causes hypersensitive response (HR)-related cell death in Nicotiana benthamiana and cotton. VdRTX1 possesses a signal peptide but is unlikely to be an apoplastic effector because its nuclear localization in the plant is necessary for cell death induction. Knockout of VdRTX1 significantly enhanced V. dahliae virulence on tobacco while V. dahliae employs the known suppressor VdCBM1 to escape the immunity induced by VdRTX1. VdRTX1 homologs are widely distributed in fungi but transient expression of 24 homologs from other fungi did not yield cell death induction, suggesting that this function is specific to the VdRTX1 in V. dahliae. Expression of site-directed mutants of VdRTX1 in N. benthamiana leaves revealed conserved ligand-binding sites that are important for VdRTX1 function in inducing cell death. Thus, VdRTX1 functions as a unique HR-inducing effector in V. dahliae that contributes to the activation of plant immunity.


Assuntos
Verticillium , Acremonium , Gossypium/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal , Ribonucleases/metabolismo , /microbiologia
10.
Sci Rep ; 10(1): 17789, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082412

RESUMO

B-box transcription factors (BBXs) are important regulators of flowering, photomorphogenesis, shade-avoidance, abiotic and biotic stresses and plant hormonal pathways. In Arabidopsis, 32 BBX proteins have been identified and classified into five groups based on their structural domains. Little is known about the fifth group members (BBX26-BBX32) and the detailed molecular mechanisms relevant to their functions. Here we identified B-box transcription factor 28 (BBX28) that interacts with Constans (CO), a transcriptional activator of Flowering Locus T (FT). Overexpressing BBX28 leads to late flowering with dramatically decreased FT transcription, and bbx28 deficient mutant displays a weak early flowering phenotype under long days (LD), indicating that BBX28 plays a negative and redundant role in flowering under LD. Additionally, the interaction between BBX28 and CO decreases the recruitment of CO to FT locus without affecting the transcriptional activation activity of CO. Moreover, the N-terminal cysteines, especially those within the B-box domain, are indispensable for the heterodimerization between BBX28 and CO and activation of CO on FT transcription. Genetic evidences show that the later flowering caused by BBX28 overexpression is compromised by CO ectopic expression. Collectively, these results supported that BBX28 functions with CO and FT to negatively regulate Arabidopsis flowering, in which the N-terminal conserved cysteines of BBX28 might play a central role.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Flores/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Fenótipo , Fenômenos Fisiológicos Vegetais , Plantas Geneticamente Modificadas , Ligação Proteica , Fatores de Transcrição/genética
11.
Mol Plant Pathol ; 21(5): 667-685, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32314529

RESUMO

Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant-pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host-pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host-pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae-plant interaction via an intrinsic virulence function and suppress immunity following infection.


Assuntos
Ascomicetos/patogenicidade , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/genética , Virulência
12.
Environ Sci Pollut Res Int ; 27(1): 1004-1008, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820226

RESUMO

Integrated rice-duck farming (IRDF) has proven to decrease methane (CH4) emissions due to increased dissolved oxygen caused by duck bioturbation. The duck bioturbation, however, also causes many bubbles of CH4 that were overlooked in previous studies. Therefore, it is uncertain whether IRDF could decrease CH4 emissions. We hypothesize that the effect of IRDF on CH4 emissions is related with the intensity of duck bioturbation. We simulated duck's disturbance (trampling and foraging) by stirring and aerating the surface soil in flooded rice fields. Three treatments were disturbed with an interval of 12 h (D12), 24 h (D24), and 48 h (D48), respectively, with non-disturbance as the control (CK). CH4 emissions as bubbles during the disturbance period (CH4-A) were investigated. Besides, CH4 emissions were investigated every 2 h (CH4-B), which lasted for 4 days during the rice elongation stage. Compared with CK, D12, D24, and D48 decreased CH4-B emissions by 17.1%, 14.0%, and 10.1%, respectively. However, the CH4-A emissions under D12, D24, and D48 were equivalent to 14.2%, 14.0%, and 11.9% of CH4 emissions under CK, respectively. On the whole, simulated duck bioturbation had limited effects on the reduction of total CH4 emissions.


Assuntos
Metano/análise , Óxido Nitroso/análise , Agricultura , Animais , China , Patos , Fazendas , Metano/química , Óxido Nitroso/química , Oryza , Oxigênio , Solo
13.
Environ Microbiol ; 21(12): 4852-4874, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31667948

RESUMO

Verticillium dahliae is a soil-borne fungus that causes vascular wilt on numerous plants worldwide. The fungus survives in the soil for up to 14 years by producing melanized microsclerotia. The protective function of melanin in abiotic stresses is well documented. Here, we found that the V. dahliae tetraspan transmembrane protein VdSho1, a homolog of the Saccharomyces cerevisiae Sho1, acts as an osmosensor, and is required for plant penetration and melanin biosynthesis. The deletion mutant ΔSho1 was incubated on a cellophane membrane substrate that mimics the plant epidermis, revealing that the penetration of ΔSho1 strain was reduced compared to the wild-type strain. Furthermore, VdSho1 regulates melanin biosynthesis by a signalling mechanism requiring a kinase-kinase signalling module of Vst50-Vst11-Vst7. Strains, ΔVst50, ΔVst7 and ΔVst11 also displayed defective penetration and melanin production like the ΔSho1 strain. Defects in penetration and melanin production in ΔSho1 were restored by overexpression of Vst50, suggesting that Vst50 lies downstream of VdSho1 in the regulatory pathway governing penetration and melanin biosynthesis. Data analyses revealed that the transmembrane portion of VdSho1 was essential for both membrane penetration and melanin production. This study demonstrates that Vst50-Vst11-Vst7 module regulates VdSho1-mediated plant penetration and melanin production in V. dahliae, contributing to virulence.


Assuntos
Proteínas Fúngicas/metabolismo , Gossypium/microbiologia , Melaninas/biossíntese , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Verticillium/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Metabolismo Secundário , Deleção de Sequência , Transdução de Sinais , Verticillium/genética , Verticillium/patogenicidade , Virulência
14.
Mol Plant Pathol ; 20(6): 857-876, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30957942

RESUMO

Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.


Assuntos
Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Verticillium/patogenicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Gossypium/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
15.
New Phytol ; 222(2): 1012-1029, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30609067

RESUMO

Verticillium dahliae is a broad host-range pathogen that causes vascular wilts in plants. Interactions between three hosts and specific V. dahliae genotypes result in severe defoliation. The underlying mechanisms of defoliation are unresolved. Genome resequencing, gene deletion and complementation, gene expression analysis, sequence divergence, defoliating phenotype identification, virulence analysis, and quantification of V. dahliae secondary metabolites were performed. Population genomics previously revealed that G-LSR2 was horizontally transferred from the fungus Fusarium oxysporum f. sp. vasinfectum to V. dahliae and is exclusively found in the genomes of defoliating (D) strains. Deletion of seven genes within G-LSR2, designated as VdDf genes, produced the nondefoliation phenotype on cotton, olive, and okra but complementation of two genes restored the defoliation phenotype. Genes VdDf5 and VdDf6 associated with defoliation shared homology with polyketide synthases involved in secondary metabolism, whereas VdDf7 shared homology with proteins involved in the biosynthesis of N-lauroylethanolamine (N-acylethanolamine (NAE) 12:0), a compound that induces defoliation. NAE overbiosynthesis by D strains also appears to disrupt NAE metabolism in cotton by inducing overexpression of fatty acid amide hydrolase. The VdDfs modulate the synthesis and overproduction of secondary metabolites, such as NAE 12:0, that cause defoliation either by altering abscisic acid sensitivity, hormone disruption, or sensitivity to the pathogen.


Assuntos
Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Verticillium/genética , Verticillium/patogenicidade , Sequência de Bases , Etanolaminas/metabolismo , Genes Fúngicos , Variação Genética , Genoma Fúngico , Gossypium/genética , Ácidos Láuricos/metabolismo , Modelos Biológicos , Família Multigênica , Fenótipo , Metabolismo Secundário/genética
16.
J Environ Manage ; 231: 1257-1262, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602250

RESUMO

Water and organic amendments are the two most important factors that control methane (CH4) emissions from rice fields, the combined effect of which on CH4 emissions has been rarely studied. Thus, a field experiment in a split-plot design was conducted to investigate the combined effect of straw and water management on CH4 emissions. Main plots had water treatments: continuous flooding (CF), flooding - midseason drying - flooding (FDF), and flooding for transplanting - rainfed (RF); and subplots had straw treatments: straw incorporated into soil (SI), straw mulching (SM), and without straw. Results showed that the presence of water layer led to substantial increase in CH4 emissions which were enhanced by straw application. Cumulative CH4 emissions were influenced by water, straw, and their interactions significantly (P < 0.05). The cumulative CH4 emissions were 505.3, 241.2, and 56.5 kg ha-1 for CF, FDF, and RF, respectively. By contrast, SI under CF, FDF, and RF increased CH4 emissions by 265.4, 271.4, and 175.6 kg ha-1, respectively. And SM under CF, FDF, and RF increased CH4 emissions by 213.3, 112.8, and 14.6 kg ha-1, respectively. The results indicated that SM resulted in less CH4 emissions compared with SI, especially in plots frequently with absence of water layer. Besides, SM had a potential to increase rice yield in rice paddies that had a lack of water. Therefore, in-season straw application should be avoided in lowland rice paddies, and straw mulching is practical in rice paddies lack of water.


Assuntos
Oryza , Agricultura , Metano , Óxido Nitroso , Solo , Água
17.
Front Plant Sci ; 9: 1266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254650

RESUMO

Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.

18.
Sci Rep ; 8(1): 779, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335439

RESUMO

This study provides a complete account of global warming potential (GWP) and greenhouse gas intensity (GHGI) in relation to a long-term water management experiment in Chinese double-rice cropping systems. The three strategies of water management comprised continuous (year-round) flooding (CF), flooding during the rice season but with drainage during the midseason and harvest time (F-D-F), and irrigation only for flooding during transplanting and the tillering stage (F-RF). The CH4 and N2O fluxes were measured with the static chamber method. Soil organic carbon (SOC) sequestration rates were estimated based on the changes in the carbon stocks during 1998-2014. Longer periods of soil flooding led to increased CH4 emissions, reduced N2O emissions, and enhanced SOC sequestration. The net GWPs were 22,497, 8,895, and 1,646 kg CO2-equivalent ha-1 yr-1 for the CF, F-D-F, and F-RF, respectively. The annual rice grain yields were comparable between the F-D-F and CF, but were reduced significantly (by 13%) in the F-RF. The GHGIs were 2.07, 0.87, and 0.18 kg CO2-equivalent kg-1 grain yr-1 for the CF, F-D-F, and F-RF, respectively. These results suggest that F-D-F could be used to maintain the grain yields and simultaneously mitigate the climatic impact of double rice-cropping systems.

19.
Sci Rep ; 6: 37402, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869209

RESUMO

The in situ application of rice straw enhances CH4 emissions by a large margin. The ex situ application of rice straw in uplands, however, may mitigate total global warming potential (GWP) of CH4 and N2O emissions from paddy-upland coexisting systems. To evaluate the efficiency of this practice, two field trials were conducted in rice-rice-fallow and maize-rape cropping systems, respectively. Year-round measurements of CH4 and N2O emissions were conducted to evaluate the system-scaled GWP. The results showed that CH4 accounted for more than 98% of GWP in paddy. Straw removal from paddy decreased 44.7% (302.1 kg ha-1 yr-1) of CH4 emissions and 51.2% (0.31 kg ha-1 yr-1) of N2O emissions, thus decreased 44.8% (7693 kg CO2-eqv ha-1 yr-1) of annual GWP. N2O accounted for almost 100% of GWP in upland. Straw application in upland had insignificant effects on CH4 and N2O emissions, which increased GWP only by 91 kg CO2-eqv ha-1 yr-1. So, the transfer of straw from paddy to upland could decrease GWP by 7602 kg CO2-eqv ha-1 yr-1. Moreover, straw retention during late rice season contributed to 88.2% of annual GWP increment. It is recommended to transfer early rice straw to upland considering GWP mitigation, nutrient recycling and labor cost.


Assuntos
Agricultura , Metano/análise , Óxido Nitroso/análise , Oryza/química , Resíduos/análise , Aquecimento Global , Chuva , Solo , Temperatura
20.
Environ Sci Pollut Res Int ; 23(11): 10911-10921, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26898929

RESUMO

Soil Ca(2+) loss from agricultural lands through surface runoff can accelerate soil acidification and render soil degradation, but the characteristics of Ca(2+) loss and influencing factors in watershed scale are unclear. This study was carried out in a watershed with various land uses in a subtropical region of China. The outlet flow was automatically monitored every 5 min all year round, and the water samples were collected twice a year from 2001 to 2011. The concentrations of Ca(2+), Mg(2+), K(+), total nitrogen (TN), and total phosphorus (TP) of water samples were measured. The dynamic losses of the nutrients through the outlet flow were estimated, and the relationships between the nutrient losses and rainfall intensity as well as antecedent soil moisture were investigated. The results showed that great variations of nutrient concentrations and losses appeared during the investigation period. The average concentrations of Ca(2+), Mg(2+), K(+), TN, and TP were 0.43, 0.08, 0.10, 0.19, and 0.003 mmol L(-1), respectively. The average Ca(2+) loss reached 1493.79 mol ha(-1) year(-1) and was several times higher than for Mg(2+), K(+), and TN, about 140 times higher than for TP. Rainfall intensity had remarkable effects on Ca(2+) concentration (P < 0.01) and loss (P < 0.05) when it reached rainstorm level (50 mm day(-1)), while a quadratic relationship was observed between antecedent soil moisture and Ca(2+) concentration only when rainfall intensity was less than 50 mm day(-1). In a word, much greater amounts of Ca(2+) were lost from the watershed, and this may be one important contributor to the increasing acidification of acidic soils in subtropical regions.


Assuntos
Agricultura , Cálcio/análise , Solo/química , China , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Chuva , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...